LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Zero-Dimensional (Piperidinium)2MnBr4: Ring Puckering-Induced Isostructural Transition and Strong Electron-Phonon Coupling-Mediated Self-Trapped Exciton Emission.

Photo by _zachreiner_ from unsplash

We report on the synthesis, structure, and photophysical properties of a lead-free organic-inorganic hybrid halide, (Piperidinium)2MnBr4 (PipMBr). It crystallizes in a monoclinic P21/n structure, with isolated MnBr4 tetrahedra representing a… Click to show full abstract

We report on the synthesis, structure, and photophysical properties of a lead-free organic-inorganic hybrid halide, (Piperidinium)2MnBr4 (PipMBr). It crystallizes in a monoclinic P21/n structure, with isolated MnBr4 tetrahedra representing a zero-dimensional compound. It undergoes a reversible isostructural transition at 422/417 K in the heating/cooling cycle owing to the hydrogen-bonding rearrangement mediated by ring puckering of piperidinium cations. This compound exhibits green emission with a photoluminescence quantum yield of 51%. Interestingly, strong electron-longitudinal optical phonon coupling with γLO of 237 meV is evidenced from the broadening of the temperature-dependent emission linewidth and the Raman spectrum. Such strong electron-phonon coupling and a relatively low Debye temperature (137 K) suggest the self-trapped exciton emission in this compound.

Keywords: phonon coupling; piperidinium 2mnbr4; strong electron; emission

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.