The properties of supports have a significant effect on the activity of noble metal single atoms. In this work, Co-doped CeO2-supported single-atom Pt catalysts (Pt1/Co-CeO2) have been acquired by a… Click to show full abstract
The properties of supports have a significant effect on the activity of noble metal single atoms. In this work, Co-doped CeO2-supported single-atom Pt catalysts (Pt1/Co-CeO2) have been acquired by a synchronous pyrolysis/deposition route and demonstrated to promote low-temperature oxidation of CO. Revealed by a model reaction of 1% CO + 1% O2 + 98% He at a space velocity of 12,000 mL/gcat/h, CO conversion (100 °C) acquired on a (0.5% Pt)/(10% Co-CeO2) catalyst (36.6%) was 3.6 and 4.9 times those of 0.5% Pt/CeO2 (10.0%) and 10% Co-CeO2 (7.4%) catalysts and 2.1 times that of their conversion sum (17.4%), confirming the positive role of the Co dopant in boosting the low-temperature oxidation of CO. The consistent results are also verified in the comparison of Pt1/Co-ZnO with Pt1/ZnO and Pt1/Co-Al2O3 with Pt1/Al2O3. In addition, the activity of single-atom Pt1/Co-CeO2 catalysts can be facilely modified by changing the loading of Pt and/or doping amount of Co. These reasonable data will provide a methodology to access more applicable catalysts for CO oxidation at low temperature.
               
Click one of the above tabs to view related content.