LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ring Strain Energies of Three-Membered Homoatomic Inorganic Rings El3 and Diheterotetreliranes El2Tt (Tt = C, Si, Ge): Accurate versus Additive Approaches

Photo by nickkarvounis from unsplash

Accurate ring strain energies (RSEs) for three-membered symmetric inorganic rings El3 and organic dihetero-monocycles El2C and their silicon El2Si and germanium El2Ge analogues have been computed for group 14–16 “El”… Click to show full abstract

Accurate ring strain energies (RSEs) for three-membered symmetric inorganic rings El3 and organic dihetero-monocycles El2C and their silicon El2Si and germanium El2Ge analogues have been computed for group 14–16 “El” heteroatoms using appropriate homodesmotic reactions and calculated at the DLPNO-CCSD-(T)/def2-TZVPP//B3LYP-D4/def2-TZVP(ecp) level. Rings containing triels and Sn/Pb heteroatoms are studied as exceptions to the RSE calculation as they either do not constitute genuine rings or cannot use the general homodesmotic reaction scheme due to uncompensated interactions. Some remarkable concepts already related to the RSE such as aromaticity or strain relaxation by increasing the s-character in the lone pair (LP) of the group 15–16 elements are analyzed extensively. An appealing alternative procedure for the rapid estimation of RSEs using additive rules, based on contributions of ring atoms or endocyclic bonds, is disclosed.

Keywords: rings el3; strain energies; inorganic rings; three membered; ring strain

Journal Title: Inorganic Chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.