LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pourbaix Diagram of Astatine Revisited: Experimental Investigations.

Photo from wikipedia

The Pourbaix diagram of an element displays its stable chemical forms with respect to the redox potential and pH of the solution, whose knowledge is fundamental for understanding and anticipating… Click to show full abstract

The Pourbaix diagram of an element displays its stable chemical forms with respect to the redox potential and pH of the solution, whose knowledge is fundamental for understanding and anticipating the chemistry of the element in a specified solution. Unlike most halogens, the Pourbaix diagram in the aqueous phase for astatine (At, Z = 85) is still under construction. In particular, the predominant domains of two astatine species assumed to exist under alkaline conditions, At- and AtO(OH)2-, need to be refined. Through high-performance ion-exchange chromatography, electromobility measurements, and competition experiments, the existence of At- and AtO(OH)2- has been confirmed and the associated standard potential has been determined for the first time (0.86 ± 0.05 V vs the standard hydrogen electrode). On the basis of these results, a revised version of astatine's Pourbaix diagram is proposed, covering the three oxidation states of astatine that exist in the thermodynamic stability range of water: At(-I), At(I), and At(III) (as At-, At+, AtO+, AtO(OH), and AtO(OH)2-).

Keywords: diagram astatine; ato; chemistry; astatine revisited; pourbaix diagram

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.