LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cyclometalated Spirobifluorene Imidazolylidene Platinum(II) Complexes with Predominant 3LC Emissive Character and High Photoluminescence Quantum Yields.

Photo by sharonmccutcheon from unsplash

Two novel bidentate C^C*spiro cyclometalated platinum(II) complexes comprising a spiro-conjugated bifluorene ligand and different β-diketonate auxiliary ligands are synthesized and characterized. Their preparation employs a robust and elaborate synthetic protocol… Click to show full abstract

Two novel bidentate C^C*spiro cyclometalated platinum(II) complexes comprising a spiro-conjugated bifluorene ligand and different β-diketonate auxiliary ligands are synthesized and characterized. Their preparation employs a robust and elaborate synthetic protocol commencing with an N-heterocyclic carbene precursor. Structural characterization by means of NMR techniques and solid-state structures validate the proposed and herein presented molecular scaffolds. Photophysical studies, including laser flash photolysis methods, reveal an almost exclusively ligand-centered triplet state, governed by the C^C*spiro-NHC ligand. The high triplet energies and the long triplet lifetimes in the order of 30 μs in solution make the complexes good candidates for light-emitting diode-driven photocatalysis, as initial energy transfer experiments reveal. In-depth time-dependent density functional theory investigations are in excellent accordance with our spectroscopic findings. The title compounds are highly emissive in the bluish-green color region with quantum yields of up to 87% in solid-state measurements.

Keywords: platinum complexes; cyclometalated spirobifluorene; spirobifluorene imidazolylidene; quantum yields

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.