A highly symmetric bis-triazole-pyridine-based organic ligand, i.e., 3,5-di(4H-1,2,4-triazol-4-yl)pyridine (L), and Cu(II) salts were used to synthesize three cationic Cu(I) metal-organic frameworks (MOFs), namely, {[Cu(L)]·(NO3)·(H2O)}n (1), {[Cu(L)]·(BF4)·0.5H2O}n (2), and {[Cu1.25(L)]·1.25(ClO4)·H2O}n (3).… Click to show full abstract
A highly symmetric bis-triazole-pyridine-based organic ligand, i.e., 3,5-di(4H-1,2,4-triazol-4-yl)pyridine (L), and Cu(II) salts were used to synthesize three cationic Cu(I) metal-organic frameworks (MOFs), namely, {[Cu(L)]·(NO3)·(H2O)}n (1), {[Cu(L)]·(BF4)·0.5H2O}n (2), and {[Cu1.25(L)]·1.25(ClO4)·H2O}n (3). All three MOFs have nonbonded anions situated inside the pore spaces. Both 1 and 2 have a two-dimensional network structure, while 3 has a three-dimensional structure. All three MOFs were characterized using Fourier transform infrared spectroscopy, elemental (C, H, and N) analysis, thermogravimetric analysis, and powder and single-crystal X-ray diffraction. Due to the presence of a Lewis basic pyridine moiety, these MOFs could serve as luminescent probes for the selective detection of Ce3+ ions with excellent efficiency (10-7 M). The synthesis of Cu(I)-based MOFs and their use to detect Ce3+ ions in water via a turn-on fluorescence process have rarely been reported. These MOFs are highly stable in water, are recyclable, and function efficiently at different pH values.
               
Click one of the above tabs to view related content.