LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermoelectric and Photovoltaic Properties of Mn-Doped Kesterite Cu2Zn1-xMnxSnSe4.

Photo by dereksutton from unsplash

The semiconductor Cu2ZnSnSe4 (CZTSe) is a promising candidate for both thermoelectric and photovoltaic energy harvesting applications due to a combination of features such as direct band gap, high absorption coefficient,… Click to show full abstract

The semiconductor Cu2ZnSnSe4 (CZTSe) is a promising candidate for both thermoelectric and photovoltaic energy harvesting applications due to a combination of features such as direct band gap, high absorption coefficient, and low thermal conductivity. We report the solid-state synthesis and characterization of Mn-doped Cu2Zn1-xMnxSnSe4 (x = 0, 0.05, 0.10, and 0.15) in an attempt to explore the effect of isovalent substitution at the Zn site. X-ray diffraction and Raman spectroscopy of all specimens confirmed the formation of a single-phase tetragonal kesterite structure (space group I4̅). The band gap obtained by UV-visible diffuse reflectance measurements was 1.42 eV for all compositions. Thermoelectric properties were measured in the range 300-785 K. Electrical resistivity was metallic and reduced on Mn doping, while the Seebeck coefficient exhibited a p-type semiconducting behavior that enhanced on Mn doping, with associated enhancement of the power factor. Lattice thermal conductivity showed a 1/T behavior, falling from about 1.9-2.7 W m-1 K-1 at 300 K to 0.51-0.9 W m-1 K-1 above 750 K. The combined effect of enhanced power factor and reduced lattice thermal conductivity resulted in a figure of merit ZT in the range of 0.19-0.42 above 750 K. Thin-film photovoltaic devices with a CZTSe absorber and an SnSe electron transport layer gave 3.2% efficiency.

Keywords: photovoltaic; photovoltaic properties; thermoelectric photovoltaic; cu2zn1 xmnxsnse4; thermal conductivity

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.