LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient Charge Transfers in Highly Conductive Copper Selenide Quantum Dot-Confined Catalysts for Robust Oxygen Evolution Reaction.

Photo from wikipedia

Defective quantum dots (QDs) are the emerging materials for catalysis by virtue of their atomic-scale size, high monodispersity, and ultra-high specific surface area. However, the dispersed nature of QDs fundamentally… Click to show full abstract

Defective quantum dots (QDs) are the emerging materials for catalysis by virtue of their atomic-scale size, high monodispersity, and ultra-high specific surface area. However, the dispersed nature of QDs fundamentally prohibits the efficient charge transfer in various catalytic processes. Here, we report efficient and robust electrocatalytic oxygen evolution based on defective and highly conductive copper selenide (CuSe) QDs confined in an amorphous carbon matrix with good uniformity (average diameter 4.25 nm) and a high areal density (1.8 × 1012 cm-2). The CuSe QD-confined catalysts with abundant selenide vacancies were prepared by using a pulsed laser deposition system benefitted by high substrate temperature and ultrahigh vacuum growth conditions, as evidenced by electron paramagnetic resonance characterizations. An ultra-low charge transfer resistance (about 7 Ω) determined by electrochemical impedance spectroscopy measurement indicates the efficient charge transfer of CuSe quantum-confined catalysts, which is guaranteed by its high conductivity (with a low resistivity of 2.33 μΩ·m), as revealed by electrical transport measurements. Our work provides a universal design scheme of the dispersed QD-based composite catalysts and demonstrates the CuSe QD-confined catalysts as an efficient and robust electrocatalyst for oxygen evolution reaction.

Keywords: oxygen evolution; quantum; efficient charge; charge; confined catalysts

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.