LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Amine-Functionalized Carbon Bowl-Supported Pd-La(OH)3 for Formic Acid Dehydrogenation.

Photo from wikipedia

Formic acid (HCOOH, FA) is emerging as an appealing carrier for hydrogen storage owing to its renewability, a high volumetric capacity of 53 g H2/L, and convenient storage/transportation as a… Click to show full abstract

Formic acid (HCOOH, FA) is emerging as an appealing carrier for hydrogen storage owing to its renewability, a high volumetric capacity of 53 g H2/L, and convenient storage/transportation as a liquid. It is highly desired but still a challenge to search highly efficient catalysts to realize hydrogen evolution from FA. Here, monodispersed and ultrasmall Pd-La(OH)3 nanoparticles (NPs) anchored on amine-functionalized N-doped porous carbon bowl (N-PCB-NH2) substrates have been fabricated through a facile wet chemistry approach. As a result of the ultrafine size of Pd-La(OH)3 NPs (1.6 nm), the deprotonation ability of La(OH)3 and amine groups, and the strong metal-support interaction between Pd-La(OH)3 and N-PCB-NH2, the as-prepared Pd-La(OH)3/N-PCB-NH2 catalyst exhibits 100% H2 selectivity and exceptional catalytic property with a high turnover frequency value up to 9585 h-1 for FA dehydrogenation at 323 K, which is superior to most of the heterogeneous catalysts ever reported. Kinetic isotope effect measurements demonstrate that the C-H bond cleavage is a rate-determining step in the FA dehydrogenation reaction as compared to the O-H bond dissociation. This work presents a feasible approach to synthesize supported ultrafine metal NP catalysts with porous bowl structures for H2 generation from FA.

Keywords: formic acid; chemistry; bowl; amine functionalized; carbon bowl; dehydrogenation

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.