For the first time, the highly sensitive 1-(nitratomethyl)-5H-tetrazole (1-NAMT) was synthesized, representing the shortest possible 1-(nitratoalkyl)-5H-tetrazole with a combined nitrogen and oxygen content of 81.4%. Compared to its related ethyl… Click to show full abstract
For the first time, the highly sensitive 1-(nitratomethyl)-5H-tetrazole (1-NAMT) was synthesized, representing the shortest possible 1-(nitratoalkyl)-5H-tetrazole with a combined nitrogen and oxygen content of 81.4%. Compared to its related ethyl derivative, 1-(nitratoethyl)-5H-tetrazole, it exhibits improved oxygen balance, resulting in higher detonation parameters. 1-NAMT was thoroughly analyzed by single-crystal diffraction experiments accompanied by elemental analysis, IR spectroscopy, and multinuclear (1H, 13C, and 14N) NMR measurements. The thermal behavior of 1-NAMT was analyzed by differential thermal analysis supported by thermogravimetric analysis. Furthermore, energetic coordination compounds (ECCs) of Cu with different inorganic (e.g., nitrate, chlorate, and perchlorate) and nitroaromatic anions (e.g., picrate and styphnate) were synthesized and thoroughly analyzed. It is shown that the formation of ECCs with nitroaromatic anions (Tdec ∼ 180 °C) is a suitable strategy to improve the rather low thermal stability of 1-NAMT (125 °C).
               
Click one of the above tabs to view related content.