Mononuclear non-heme Fe(II)- and α-ketoglutarate-dependent oxygenases (FeDOs) catalyze a site-selective C-H hydroxylation. Variants of these enzymes in which a conserved Asp/Glu residue in the Fe(II)-binding facial triad is replaced by… Click to show full abstract
Mononuclear non-heme Fe(II)- and α-ketoglutarate-dependent oxygenases (FeDOs) catalyze a site-selective C-H hydroxylation. Variants of these enzymes in which a conserved Asp/Glu residue in the Fe(II)-binding facial triad is replaced by Ala/Gly can, in some cases, bind various anionic ligands and catalyze non-native chlorination and bromination reactions. In this study, we explore the binding of different anions to an FeDO facial triad variant, SadX, and the effects of that binding on HO• vs X• rebound. We establish not only that chloride and bromide enable non-native halogenation reactions but also that all anions investigated, including azide, cyanate, formate, and fluoride, significantly accelerate and influence the site selectivity of SadX hydroxylation catalysis. Azide and cyanate also lead to the formation of products resulting from N3•, NCO•, and OCN• rebound. While fluoride rebound is not observed, the rate acceleration provided by this ligand leads us to calculate barriers for HO• and F• rebound from a putative Fe(III)(OH)(F) intermediate. These calculations suggest that the lack of fluorination is due to the relative barriers of the HO• and F• rebound transition states rather than an inaccessible barrier for F• rebound. Together, these results improve our understanding of the FeDO facial triad variant tolerance of different anionic ligands, their ability to promote rebound involving these ligands, and inherent rebound preferences relative to HO• that will aid efforts to develop non-native catalysis using these enzymes.
               
Click one of the above tabs to view related content.