LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Triplet Spin-State Capped Deltahedral Structures Rather than Singlet Spin-State Oblatocloso Structures as Energetically Favored Dimanganaborane Structures.

Photo by tabithaturnervisuals from unsplash

Density functional studies show that the singlet spin-state flattened oblatocloso deltahedral structures found experimentally in the dimetallaboranes Cp*2Re2Bn-2Hn-2 (Cp* = Me5C5; n = 8-12) of the third row group 7… Click to show full abstract

Density functional studies show that the singlet spin-state flattened oblatocloso deltahedral structures found experimentally in the dimetallaboranes Cp*2Re2Bn-2Hn-2 (Cp* = Me5C5; n = 8-12) of the third row group 7 element rhenium are not favored for analogous dimetallaboranes Cp2Mn2Bn-2Hn-2 (n = 8-14) of its first row congener manganese. Instead, the energetically preferred structures for the dimanganaboranes are higher spin-state triplet and quintet spin-state structures. This appears to be related to the lower ligand field splittings in complexes of the first row transition-metal manganese relative to analogous complexes of the third row transition-metal rhenium. The lowest-energy Cp2Mn2Bn-2Hn-2 (n = 8-13) structures typically have a central MnBn-2 closo deltahedron with one face capped by the second CpMn unit. However, for the 14-vertex Cp2Mn2B12H12 system the lowest-energy structures consist of B12 icosahedra with faces capped by both CpMn units. The thermochemistry of cluster buildup reactions of the type Cp2Mn2Bn-2Hn-2 + BH → Cp2Mn2Bn-1Hn-1 suggests that the 11- and 13-vertex structures are likely to be favored products in reactions of cyclopentadienylmanganese derivatives with borane sources. The paramagnetism of the predicted triplet and quintet spin states for the lowest-energy dimanganaboranes Cp2Mn2Bn-2Hn-2 (n = 8-14) suggests possible applications in novel magnetic materials.

Keywords: state; cp2mn2bn 2hn; spin state; singlet spin; deltahedral structures

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.