LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

(C4H10NO)PbX3 (X = Cl, Br): Design of Two Lead Halide Perovskite Crystals with Moderate Nonlinear Optical Properties.

Photo from wikipedia

Introducing electronegative species into organic constituents was considered to be one effective strategy for adjusting crystal symmetry and designing new nonlinear optical (NLO) materials. By substitution of C4 in piperidine… Click to show full abstract

Introducing electronegative species into organic constituents was considered to be one effective strategy for adjusting crystal symmetry and designing new nonlinear optical (NLO) materials. By substitution of C4 in piperidine (C5H11N) with electronegative oxygen, organic morpholine (C4H9NO) was easily obtained. Therefore, to design NLO crystals, we focused on combinations of stereochemically active lone-pair (SCALP) cation (Pb2+)-based chloride and bromide with morpholine molecules. In this work, two lead halide hybrid perovskite (C4H10NO)PbX3 (X = Cl, Br, abbreviated as MPbCl3 and MPbBr3, respectively) single crystals with moderate nonlinear optical properties were synthesized by a slow evaporation method. The two title crystals belong to orthorhombic space group P212121 with one-dimensional (1D) chainlike perovskite structures. Theoretical calculations revealed that the second harmonic generation (SHG) responses mainly originate from distorted {PbX6} octahedrons of the inorganic framework. Remarkably, moderate phase-matching SHG effects of about 0.70 and 0.81 times KH2PO4, large birefringences of 0.098 and 0.111 at 1064 nm, and large laser damage thresholds (LDTs) of 19.94 and 46.82 MW/cm2 were estimated for MPbCl3 and MPbBr3, respectively. This work provides a novel strategy for new purpose-designed hybrid NLO crystals by adjustment and modulation of chemical modification.

Keywords: crystals moderate; moderate nonlinear; nonlinear optical; two lead; c4h10no pbx3; lead halide

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.