LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Theoretical Study of Intrinsic and Extrinsic Point Defects and Their Effects on Thermoelectric Properties of Cu2SnSe3.

Photo from wikipedia

Current understanding of the intrinsic point defects and potential extrinsic dopants in p-type Cu2SnSe3 is limited, which hinders further improvement of its thermoelectric performance. Here, we show that the dominant… Click to show full abstract

Current understanding of the intrinsic point defects and potential extrinsic dopants in p-type Cu2SnSe3 is limited, which hinders further improvement of its thermoelectric performance. Here, we show that the dominant intrinsic defects in Cu2SnSe3 are CuSn and VCu under different chemical conditions, respectively. The presence of VCu will damage the hole conduction network and reduce hole mobility. Besides, we find that the substitution of Al, Ga, In, Cd, Zn, Fe, and Mn for Sn can inhibit the formation of VCu; introducing CuSn, FeSn, MnSn, and NiCu defects can significantly enhance electronic density of states near the Fermi level due to the contribution of 3d orbitals. Therefore, increasing the Cu content and/or introducing the above beneficial dopants appropriately are expected to cause enhancement of carrier mobility and/or thermopower of Cu2SnSe3. Furthermore, introducing AgCu, AlSn, ZnSn, GeSn, and MnSn defects can induce large mass and strain field fluctuations, lowering lattice thermal conductivity remarkably. Present results not only deepen one's insights into point defects in Cu2SnSe3 but also provide us with a guide to improve its thermoelectric properties.

Keywords: intrinsic extrinsic; theoretical study; point defects; point; thermoelectric properties; study intrinsic

Journal Title: Inorganic chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.