LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Iridium(III) Complex Radical and Corresponding Ligand Radical Functionalized by a Tris(2,4,6-trichlorophenyl)methyl Unit: Synthesis, Structure, and Photophysical Properties.

Photo from wikipedia

Organic radical luminescent materials with doublet excited state character based on tris(2,4,6-trichlorophenyl)methyl (TTM) have attracted extensive attention in recent years. However, how they affect the phosphorescent iridium(III) complex characterized by… Click to show full abstract

Organic radical luminescent materials with doublet excited state character based on tris(2,4,6-trichlorophenyl)methyl (TTM) have attracted extensive attention in recent years. However, how they affect the phosphorescent iridium(III) complex characterized by the triplet excited state has not been studied yet. Herein, a new iridium(III) complex radical (Ir-TTM) and corresponding ligand radical (ppy-TTM) with a TTM unit have been designed and synthesized, and their radical properties were confirmed by the single crystal structure and EPR spectra. Notably, the ligand radical ppy-TTM shows an efficient red light emission, whereas the iridium complex radical Ir-TTM emits no light, which resulted from the intramolecular quenching effect of the TTM radical unit on the iridium luminescence center. DFT calculations demonstrate that the lowest doublet (D1) excited state of ppy-TTM shows an intramolecular charge transfer character from the 2-phenylpyridine moieties to the TTM unit, whereas the D1 of Ir-TTM exhibits a significant charge transfer character from the iridium luminescence center moieties to the TTM unit, which further explains the luminescence quenching mechanism of the phosphorescent iridium complex radical.

Keywords: iii complex; iridium iii; iridium; unit; complex radical; ttm

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.