Fundamental investigation of metal-CO interactions is of great importance for the development of high-performance catalysts to CO activation. Herein, a series of side-on bonded mononuclear lanthanide (Ln) oxocarbonyl complexes OLn(η2-CO)… Click to show full abstract
Fundamental investigation of metal-CO interactions is of great importance for the development of high-performance catalysts to CO activation. Herein, a series of side-on bonded mononuclear lanthanide (Ln) oxocarbonyl complexes OLn(η2-CO) (Ln = La, Ce, Pr, and Nd) have been prepared and identified in solid argon matrices. The complexes exhibit uncommonly low C-O stretching bands near 1630 cm-1, indicating remarkable C-O bond activation in these Ln analogues. The η2-CO ligand in OLn(η2-CO) can be claimed as an anion on the basis of the experimental observations and quantum chemistry investigations, although the CO anion is commonly considered to be unstable with electron auto-detachment. The CO activation in OLn(η2-CO) is attributed to the photoinduced intramolecular charge transfer from LnO to CO rather than the generally accepted metal → CO π back-donation, which conforms to the traditional Dewar-Chatt-Duncanson motif. Energy decomposition analysis combined with natural orbitals for chemical valence calculations demonstrates that the bonding between LnO and η2-CO arises from the combination of dominant ionic forces (>76%) and normal Lewis "acid-base" interactions. The fundamental findings provide guidelines for the catalyst design of CO activation.
               
Click one of the above tabs to view related content.