LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Early-Stage Formation of the SIFSIX-3-Zn Metal-Organic Framework: An Automated Computational Study.

Photo from wikipedia

Metal-organic frameworks (MOFs) have attracted significant attention over the past 2 decades due to their wide applicability as functional materials. However, targeted synthesis of novel MOFs remains problematic as their… Click to show full abstract

Metal-organic frameworks (MOFs) have attracted significant attention over the past 2 decades due to their wide applicability as functional materials. However, targeted synthesis of novel MOFs remains problematic as their formation mechanisms are poorly understood, which forces us to rely on serendipity in the synthesis of novel MOFs. Here, we demonstrate a workflow employing the artificial force induced reaction (AFIR) method to investigate the self-assembly process of the node of the SIFSIX-3-Zn MOF, [Zn(pyz)4(SiF6)2]2- (pyz = pyrazine), in an automated manner. The workflow encompassing AFIR calculations, generation of extensive reaction path networks, propagation simulations of intermediates, and further refinements of identified formation pathways showed that the nodal structure can form through multiple competing pathways involving interconvertible intermediates. This finding provides a plausible rationale for the stochastic multistage processes believed to be key in MOF formation. Furthermore, this work represents the first application of an automated reaction mechanism discovery method to a MOF system using a general workflow that is applicable to study the formation of other MOF motifs as well.

Keywords: early stage; metal organic; formation; study; formation sifsix; stage formation

Journal Title: Inorganic chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.