LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Situ Construction of MnO2-Co3O4 Nanosheet Heterojunctions on Co@NCNT Surfaces for Oxygen Evolution.

Photo by sunburned_surveyor from unsplash

Electrocatalytic water splitting is still circuitous and controversial because of the lack of highly active electrocatalysts to decrease the overpotential. Herein, we report a feasible method for constructing heterojunctions of… Click to show full abstract

Electrocatalytic water splitting is still circuitous and controversial because of the lack of highly active electrocatalysts to decrease the overpotential. Herein, we report a feasible method for constructing heterojunctions of MnO2-Co3O4 nanosheets on Co@NCNT support surfaces (MnO2-Co3O4/Co@NCNT) by spontaneous redox reactions. Experimental results indicate that Co embedded in Co@NCNT can be used as the carbon support and anchoring sites for heterojunctions, thus exposing a large number of active sites, adjusting the surface electronic structure, changing the OER rate-determining step of the catalyst, and reducing the reaction energy barrier. Besides, the in situ formation of MnO2-Co3O4 nanosheets on Co@NCNT inhibits the loss and aggregation of the catalyst, leading to robust structural stability. Therefore, the synergistic effects of these factors provide multi-functional active sites to enhance the intrinsic activity and achieve maximum catalytic performances. To deliver a current density of 10 mA cm-2, the catalyst of MnO2-Co3O4/Co@NCNT achieves an overpotential (η) of 303 mV in 1.0 M KOH media for OER. This simple redox strategy can be easily extended to prepare other ultrathin transition-metal oxide heterojunctions, which could be applied not only for water splitting but also for other energy conversion and storage technologies.

Keywords: mno2; situ construction; mno2 co3o4; construction mno2; co3o4 nanosheet

Journal Title: Inorganic chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.