A coordination-driven host has been reported to encapsulate guests by noncovalent interactions. Herein, we present the design and synthesis of a new type of prism combining porphyrin and terpyridine moieties… Click to show full abstract
A coordination-driven host has been reported to encapsulate guests by noncovalent interactions. Herein, we present the design and synthesis of a new type of prism combining porphyrin and terpyridine moieties with a long cavity. The prism host can contain bisite or monosite guests through axial coordination binding of porphyrin and aromatic π interactions of terpyridine. The ligands and prismatic complexes were characterized by electrospray ionization mass spectrometry (ESI-MS), TWIM-MS, NMR spectrometry, and single-crystal X-ray diffraction analysis. The guest encapsulation was investigated through ESI-MS, NMR spectrometry, and transient absorption spectroscopy analysis. The binding constant and stability were determined by UV-Vis spectrometry and gradient tandem MS (gMS2) techniques. Based on the prism, a selectively confined condensation reaction was also performed and detected by NMR spectrometry. This study provides a new type of porphyrin- and terpyridine-based host that could be used for the detection of pyridyl- and amine-contained molecules and confined catalysis.
               
Click one of the above tabs to view related content.