LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mn-Activated Fluoride Phosphors Modified by Surfactant with Outstanding Water Resistance and Luminescent Thermal Properties.

Photo from wikipedia

Although Mn4+-activated fluoride phosphors have high luminescence quality, their poor water resistance and thermal fluorescence properties significantly limit their practical applications. Here, we propose a surfactant modification strategy by adding… Click to show full abstract

Although Mn4+-activated fluoride phosphors have high luminescence quality, their poor water resistance and thermal fluorescence properties significantly limit their practical applications. Here, we propose a surfactant modification strategy by adding the surfactant cetyltrimethylammonium bromide (CTAB) to the synthesis and modifying the surface of the phosphor with ethylene diamine tetraacetic acid (EDTA) to obtain a phosphor with excellent luminescence thermal properties and water resistance, K2TiF6:Mn4+-xCTAB-EDTA (KTFM-xC-E) phosphors. The experimental and X-ray diffraction Rietveld refinement results confirm that the phosphor has higher structural rigidity and thus improved thermal stability. The surface modification with EDTA resulted in the formation of a dilute Mn4+ shell layer on the phosphor surface, which prevented the inward hydrolysis of the phosphor and resulted in excellent water resistance. Therefore, we have successfully modified K2TiF6:Mn4+ (KTFM) phosphors using low-cost surfactants, which also provides new ideas for other commercial high-quality phosphors.

Keywords: activated fluoride; thermal properties; water; water resistance; fluoride phosphors

Journal Title: Inorganic chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.