LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Constructing a Photocatalyst for Selective Oxidation of Benzyl Alcohol to Benzaldehyde by Photo-Fenton-like Catalysis.

Photo by picasso_the_line_art from unsplash

A photoactive metal-organic framework (MOF), [K(H2O)][Cu(DPNDI)][Cu(DPNDI)(CH3CN)(H2O)] [Cu1.5(DPNDI)1.5H1.5P2W18O62]·2H2O (Cu(Ι)W-DPNDI), was prepared by combining a functional photosensitizer N, N'-bis(4-pyridylmethyl)naphthalene diimide (DPNDI), copper(I) ions, and an oxidation catalyst [P2W18O62]6- into a single framework… Click to show full abstract

A photoactive metal-organic framework (MOF), [K(H2O)][Cu(DPNDI)][Cu(DPNDI)(CH3CN)(H2O)] [Cu1.5(DPNDI)1.5H1.5P2W18O62]·2H2O (Cu(Ι)W-DPNDI), was prepared by combining a functional photosensitizer N, N'-bis(4-pyridylmethyl)naphthalene diimide (DPNDI), copper(I) ions, and an oxidation catalyst [P2W18O62]6- into a single framework via a hydrothermal process. Cu(Ι)W-DPNDI exhibited a stable structure, strong light absorption capacity, a suitable band gap, and photoelectric properties, which provided favorable conditions for photocatalysis. In the confined space, the well-aligned Cu(I) ions and POM polyanions played a synergetic effect in the electron-transfer process and reactive oxygen species generation. By coupling photocatalysis and heterogeneous Fenton-like catalysis, Cu(Ι)W-DPNDI displayed high efficiency for the selective oxidation of aromatic alcohols, with up to >99% selectivity and 75% yield.

Keywords: like catalysis; fenton like; selective oxidation; dpndi

Journal Title: Inorganic chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.