LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pincer Platinum(II) Hydrides: High Stability Imparted by Donor-Flexible Pyridylidene Amide Ligands and Evidence for Adduct Formation before Protonation.

Photo by pavel_kalenik from unsplash

Donor-flexible ligands are an emerging class of noninnocent ligands. Their ability to adapt their donating strength toward a metal center has had numerous catalytic advantages yet has never been utilized… Click to show full abstract

Donor-flexible ligands are an emerging class of noninnocent ligands. Their ability to adapt their donating strength toward a metal center has had numerous catalytic advantages yet has never been utilized to stabilize and isolate intermediate complexes within these processes. We demonstrate through the use of a pincer ligand containing two donor-flexible pyridylidene amide (PYA) arms in coordination with platinum(II) that this ligand adaptability revealed remarkably stable hydride and formate complexes. These are typically fleeting catalytic intermediates within formic acid dehydrogenation and CO2 hydrogenation catalytic cycles. The PYA platinum hydride complexes are indefinitely stable in air, while formate complexes show no sign of β-hydrogen elimination. This robustness allowed us to investigate hydride protonation as a seemingly simple reaction, though in-depth kinetic analysis reveals a pre-equilibrium step prior to platinum hydride protonation. This initial step has been attributed to adduct formation and is slower than the protonation, and therefore a relevant aspect when designing catalytic cycles for hydrogen release and its microscopic reverse, viz., hydrogen uptake.

Keywords: flexible pyridylidene; protonation; pyridylidene amide; donor flexible; platinum

Journal Title: Inorganic chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.