LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced Photoluminescence and Reduced Dimensionality via Vacancy Ordering in a 10H Halide Perovskite

Photo from wikipedia

Vacancy-ordered halide perovskites have received great interest in optoelectronic applications. In this work, we report the novel inorganic halide Cs10MnSb6Cl30 with a distinctive 10H (10-layer hexagonal) perovskite polytype structure with… Click to show full abstract

Vacancy-ordered halide perovskites have received great interest in optoelectronic applications. In this work, we report the novel inorganic halide Cs10MnSb6Cl30 with a distinctive 10H (10-layer hexagonal) perovskite polytype structure with (hcccc)2 stacking. Cs10MnSb6Cl30 has 30% B-site vacancies ordered at both corner- and face-sharing sites, resulting in [MnSb6Cl30]10–n columns, i.e., a reduction of octahedral connectivity to 1D. This results in enhanced photoluminescence in comparison to the previously reported 25% vacancy-ordered 3C polytype Cs4MnSb2Cl12 with 2D connectivity. This demonstrates not only the existence of the 10H perovskite structure in halides but also demonstrates the degree of B-site deficiency and stacking sequence variation as a direction to tune the optical properties of perovskite polytypes via vacancy rearrangements.

Keywords: enhanced photoluminescence; vacancy; photoluminescence reduced; perovskite; via vacancy

Journal Title: Inorganic Chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.