The state-of-the-art transition-based electrocatalysts in alkaline media generally suffer from unavoidable surface reconstruction during oxygen evolution reaction measurements, leading to the collapse and loss of the crystalline matrix. Low potential… Click to show full abstract
The state-of-the-art transition-based electrocatalysts in alkaline media generally suffer from unavoidable surface reconstruction during oxygen evolution reaction measurements, leading to the collapse and loss of the crystalline matrix. Low potential discharge offers a gentle way for surface reconstruction and thus realizes the manipulation of the real active site. Nevertheless, the absence of a fundamental understanding focus on this discharge region renders the functional phase, either the crystalline or amorphous matrix, for the controllable reconstruction still undecidable. Herein, we report a scenario to employ different crystalline matrices as electrocatalysts for discharge region reconstruction. The representative low crystalline Ni2P (LC-Ni2P) possesses a relatively weak surface structure compared with highly crystalline or amorphous Ni2P (HC-Ni2P or A-Ni2P), which contributes abundant oxygen vacancies after the discharge process. The fast discharge behavior of LC-Ni2P leads to the uniform distribution of these vacancies and thus endows the inner interface with reactant activating functionality. A high increase in current density of 36.7% is achieved at 2.32 V (vs RHE) for the LC-Ni2P electrode. The understanding of the discharge behavior in this study, on different crystalline matrices, presents insights into the establishment of controllable surface reconstruction for an effective oxygen evolution reaction.
               
Click one of the above tabs to view related content.