LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accessing Unusual Reactivity through Chelation-Promoted Bond Weakening.

Photo by livvie_bruce from unsplash

Highly reducing Sm(II) reductants and protic ligands were used as a platform to ascertain the relationship between low-valent metal-protic ligand affinity and degree of ligand X–H bond weakening with the… Click to show full abstract

Highly reducing Sm(II) reductants and protic ligands were used as a platform to ascertain the relationship between low-valent metal-protic ligand affinity and degree of ligand X–H bond weakening with the goal of forming potent proton-coupled electron transfer (PCET) reductants. Among the Sm(II)-protic ligand reductant systems investigated, the samarium dibromide N-methylethanolamine (SmBr2-NMEA) reagent system displayed the best combination of metal–ligand affinity and stability against H2 evolution. The use of SmBr2-NMEA afforded the reduction of a range of substrates that are typically recalcitrant to single-electron reduction including alkynes, lactones, and arenes as stable as biphenyl. Moreover, the unique role of NMEA as a chelating ligand for Sm(II) was demonstrated by the reductive cyclization of unactivated esters bearing pendant olefins in contrast to the SmBr2-water-amine system. Finally, the SmBr2-NMEA reagent system was found to reduce substrates analogous to key intermediates in the nitrogen fixation process. These results reveal SmBr2-NMEA to be a powerful reductant for a wide range of challenging substrates and demonstrate the potential for the rational design of PCET reagents with exceptionally weak X–H bonds.

Keywords: bond weakening; ligand; smbr2 nmea; unusual reactivity; accessing unusual

Journal Title: Inorganic chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.