LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anion-π Interaction Powered Perrhenate Recognition and Extraction in Aqueous Media.

Photo from wikipedia

Selective anion recognition and extraction in aqueous media is a challenging research topic, and the anion-π interaction is an undetermined solution for the development of anion sorbent materials with better… Click to show full abstract

Selective anion recognition and extraction in aqueous media is a challenging research topic, and the anion-π interaction is an undetermined solution for the development of anion sorbent materials with better affinity and selectivity. Here, noncovalent anion-π interaction was introduced as the driving force for this purpose. A cage-based 2D cationic metal-organic framework, IPM-21, is featured with porous channels formed by complementary V-shape electron-deficient cavities. This 3D rhombic electron-deficient cavity can bind two anions with the clipped π-acidic surfaces, exhibiting much higher affinity toward ReO4- due to the strong complementary effect. This cavity was forced to expand its opening size to seamlessly adopt the ReO4- anion with a large volume. Experimental results found that the binding energy of IPM-21 with ReO4- is around 2.3 kJ/mol higher than that with ClO4-. Parts per million levels of the ReO4- anion in aqueous media can be effectively extracted by IPM-21 with a removal up to 99%, even with mixed competing anions. IPM-21 can be easily recycled and reused by treatment with high concentration aqueous NaClO4. Due to the extremely low interlamellar interaction, the IPM-21 crystal exhibited enhanced ReO4- extraction performance with the recycling times due to self-exfoliation; as a result, ultrathin IPM-21 nanosheets with large lateral sizes were produced in this process.

Keywords: interaction; recognition extraction; anion interaction; anion; aqueous media

Journal Title: Inorganic chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.