Atomically monodispersed intermetallic catalysts comprising highly accessible active sites are ideal heterogeneous catalytic materials. Designing such types of nanocatalysts on carbonaceous supports with high loading, however, remains a formidable challenge.… Click to show full abstract
Atomically monodispersed intermetallic catalysts comprising highly accessible active sites are ideal heterogeneous catalytic materials. Designing such types of nanocatalysts on carbonaceous supports with high loading, however, remains a formidable challenge. Demonstrated herein is an effective synthetic strategy to produce highly dispersed intermetallic Pd-Sn nanoparticles on various supports with high catalyst loading (upto 24 wt % Pd and 18 wt % Sn) using a discrete bimetallic Pd-Sn complex, which in turn is highly superior as compared to conventionally used methods using individual metal salts. Synergistic cooperative interaction between sub-5 nm Pd-rich particles, supports, and large intermetallic Pd-Sn particles allowed their electronic cross-talk, displaying a much higher reaction efficiency with an entirely different selectivity toward a product, which is highly unlikely in the case of comparable individual components or sequentially impregnated bimetallic materials involving in a catalytic/photocatalytic dehydrogenation, hydrogenation, tandem (de)hydrogenation, and amidation reaction. The designed synthetic strategy has the potential to contribute to the development of atomically monodispersed intermetallic high-loading functional materials for advanced electro- and photocatalytic applications.
               
Click one of the above tabs to view related content.