LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Insight into the Ligand-to-Ligand Charge-Transfer Process in Rare-Earth-Metal Diradical Complexes.

Photo from wikipedia

While a ligand-to-ligand charge-transfer (LLCT) process is an important way to understand the interactions between metal-bridged radicals for late-transition-metal complexes, there is little clear and evident observation of the LLCT… Click to show full abstract

While a ligand-to-ligand charge-transfer (LLCT) process is an important way to understand the interactions between metal-bridged radicals for late-transition-metal complexes, there is little clear and evident observation of the LLCT process for rare-earth-metal complexes. In this work, rare-earth-metal diradical complexes supported by diazabutadiene (DAD) ligands [(DAD)2RE(BH4)] [RE = Yb (1), Sm (2)] were synthesized and studied. The coordination geometries of 1 and 2 are different due to the different ionic radii. Reduction of 1 or 2 generated monoradical complexes, with one of their DAD radical anions being reduced. In all of the complexes, Sm and Yb remain at the 3+ valence state. In their UV-vis spectra, the LLCT transition of 1 could be clearly observed, but complex 2 did not show the same transition. These results could be related to the geometric structures of the complexes as well as exchange coupling between diradicals, thus clearly expanding the model for late-transition-metal-bridged diradicals to rare-earth systems experimentally.

Keywords: ligand; earth metal; ligand ligand; rare earth; process

Journal Title: Inorganic chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.