LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Situ Exsolution of Ba3(VO4)2 Nanoparticles on a V-Doped BaCoO3-δ Perovskite Oxide with Enhanced Activity for Electrocatalytic Hydrogen Evolution.

Photo by sendi_r_gibran from unsplash

The successful preparation of a perovskite-based heterostructure is important for broadening the applications of perovskites in the field of electrocatalysis, especially in a hydrogen evolution reaction (HER). Nevertheless, the limited… Click to show full abstract

The successful preparation of a perovskite-based heterostructure is important for broadening the applications of perovskites in the field of electrocatalysis, especially in a hydrogen evolution reaction (HER). Nevertheless, the limited active sites of perovskites severely hindered the HER properties. Herein, an in situ exsolution method was used to construct a nanocomposite based on V-doped BaCoO3-δ decorated with Ba3(VO4)2 (BVCO19) for alkaline HER. The exsolved Ba3(VO4)2 can induce more Co4+ ions on BaCoO3-δ, which serves as active sites for the release of H2. Meanwhile, by regulating the valency of V and Co species, the catalyst can reach a charge balance by generating more oxygen vacancies, which greatly facilitates the adsorption and dissociation of H2O molecules. The synergistic effect between the oxygen vacancies and high-valence Co4+ leads to an enhanced HER performance of BVCO19. The as-obtained catalyst delivers a low overpotential of 194 mV at 10 mA cm-2 as well as impressive stability for 100 h in alkaline media, which outperforms pristine BaCoO3-δ and most of the nonprecious-based perovskite oxides. This work provides new insights into the preparation of perovskite-based heterostructure for boosting HER.

Keywords: vo4; doped bacoo3; situ exsolution; ba3 vo4; hydrogen evolution

Journal Title: Inorganic chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.