Na4Fe3(PO4)2(P2O7) (NFPP) is an attractive candidate for Na+ batteries (SIBs) and Li+ batteries (LIBs). However, the real implementation of NFPP has been critically restrained by the inferior intrinsic electronic conductivity.… Click to show full abstract
Na4Fe3(PO4)2(P2O7) (NFPP) is an attractive candidate for Na+ batteries (SIBs) and Li+ batteries (LIBs). However, the real implementation of NFPP has been critically restrained by the inferior intrinsic electronic conductivity. Herein, in situ carbon-coated mesoporous NFPP, obtained via freeze drying and heat treatment, demonstrates highly reversible insertion/extraction of Na+/Li+. Mechanically, the electronic transmission and structural stabilities of NFPP are significantly enhanced by the graphitized carbon coating layer. Chemically, the porous nanosized structure shortens Na+/Li+ diffusion paths and increases the contact area between the electrolyte and NFPP, ultimately rendering fast ion diffusion. Greatly, long-lasting cyclability (88.5% capacity retention for over 5000 cycles), decent thermal stability at 60 °C, and impressive electrochemical performances are demonstrated in LIBs. The insertion/extraction mechanisms of NFPP in both SIBs and LIBs are systematically investigated, confirming its small volume expansion and high reversibility. The superior electrochemical performances and the insertion/extraction mechanism investigation confirm the feasibility of utilizing NFPP as a cathode material for Na+/Li+ batteries.
               
Click one of the above tabs to view related content.