LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Constructing Type-II and S-Scheme Heterojunctions of Cu2O@Cu4(SO4)(OH)6·H2O Polyhedra by In Situ Etching Cu2O with Different Exposed Facets for Enhanced Photocatalytic Sterilization and Degradation Performance.

Photo by mista_j from unsplash

The construction of type-II or S-scheme heterojunctions can effectively accelerate the directional migration of charge carriers and inhibit the recombination of electron-hole pairs to improve the catalytic performance of the… Click to show full abstract

The construction of type-II or S-scheme heterojunctions can effectively accelerate the directional migration of charge carriers and inhibit the recombination of electron-hole pairs to improve the catalytic performance of the composite catalyst; therefore, the construction and formation mechanism of a heterojunction are worth further investigation. Herein, Cu2O@Cu4(SO4)(OH)6·H2O core-shell polyhedral heterojunctions were fabricated via in situ etching Cu2O with octahedral, cuboctahedral, and cubic shapes by sodium thiosulfate (Na2S2O3). Cu2O@Cu4(SO4)(OH)6·H2O polyhedral heterojunctions demonstrated obviously enhanced sterilization and degradation performance than the corresponding single Cu2O polyhedra and Cu4(SO4)(OH)6·H2O. When Cu2O with a different morphology contacts with Cu4(SO4)(OH)6·H2O, a built-in electric field is established at the interface due to the difference in Fermi level (Ef); meanwhile, the direction of band bending and the band alignment are determined. These lead to the different migration pathways of electrons and holes, and thereby, a type-II or S-scheme heterojunction is constructed. The results showed that octahedral o-Cu2O@Cu4(SO4)(OH)6·H2O is an S-scheme heterojunction; however, cuboctahedral co-Cu2O@Cu4(SO4)(OH)6·H2O and cubic c-Cu2O@Cu4(SO4)(OH)6·H2O are type-II heterojunctions. By means of X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), diffuse reflectance spectra (DRS), and Mott-Schottky analyses, the band alignments, Fermi levels, and band offsets (ΔECB, ΔEVB) of Cu2O@Cu4(SO4)(OH)6·H2O polyhedral heterojunctions were estimated; the results indicated that the catalytic ability of the composite catalyst is determined by the type of heterojunction and the sizes of band offsets. Cubic c-Cu2O@Cu4(SO4)(OH)6·H2O has the strongest driving force (namely, biggest band offsets) to accelerate charge migration and effectively separate charge carriers, so it exhibits the strongest catalytic bactericidal and degrading abilities.

Keywords: cu2o cu4; so4 h2o; cu4 so4

Journal Title: Inorganic chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.