LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrafast Microwave Synthesis of Ru-Doped MoP with Abundant P Vacancies as the Electrocatalyst for Hydrogen Generation in a Wide pH Range.

Photo from wikipedia

Molybdenum phosphide (MoP) has received increasing attention for the hydrogen evolution reaction (HER) due to its Pt-like electronic structure and high electrical conductivity. In this work, a flake-like Ru-doped MoP… Click to show full abstract

Molybdenum phosphide (MoP) has received increasing attention for the hydrogen evolution reaction (HER) due to its Pt-like electronic structure and high electrical conductivity. In this work, a flake-like Ru-doped MoP with phosphorus vacancy (Ru-MoP-PV) electrocatalyst is synthesized for the first time by a simple and rapid room-temperature microwave approach within 30 s. The created abundant phosphorus vacancies provide rich active sites and favor rapid electron transfer. The introduced Ru also enhances the catalytic activity of the synthesized electrocatalyst efficiently. Then, the designed Ru-MoP-PV possesses low overpotentials for HER with 79, 100, and 161 mV in 1.0 M KOH, 0.5 M H2SO4, and 1.0 M phosphate-buffered saline to obtain 10 mA cm-2. The Ru-MoP-PV and NiFe-layered double hydroxide are used as the cathode and the anode, respectively, to drive water splitting and just need a low cell voltage of 1.6 V to achieve 10 mA cm-2. This work provides a feasible way for the rapid production of metal phosphides for energy conversion and storage applications.

Keywords: ultrafast microwave; microwave synthesis; doped mop; synthesis doped; hydrogen; mop abundant

Journal Title: Inorganic chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.