LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Emission Enhancement and Color Tuning for GdVO4:Ln3+ (Ln = Dy, Eu) by Surface Modification at Single Wavelength Excitation.

Photo from wikipedia

The surface modification can realize systematically the emission enhancement of GdVO4:Ln3+ (Ln = Dy, Eu) microstructures and multicolor emission at single component. The structure, morphology, composition, and the surface ligands… Click to show full abstract

The surface modification can realize systematically the emission enhancement of GdVO4:Ln3+ (Ln = Dy, Eu) microstructures and multicolor emission at single component. The structure, morphology, composition, and the surface ligands modification of as-prepared samples were studied in detail. It is found that the surface-modified ligands can act as sensitizer to improve the emission of the Eu3+ and Dy3+ ions via the energy transfer besides the VO43--Eu3+/Dy3+ process. More importantly, under a single wavelength excitation, the emission color can be effectively tuned by manipulating the doping ratio of the Eu3+ ions in the internal crystal lattice and the Tb3+ ions in the external surface ligands, simultaneously. And further, multicolor emissions are obtained under single wavelength excitation due to the high overlapping between the VO43- absorption and the π-π* electron transition of the ligands. These findings may open new avenues to design and develop new highly efficient luminescent materials.

Keywords: single wavelength; surface; wavelength excitation; modification; emission

Journal Title: Inorganic chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.