LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cation-Exchange Approach to Tuning the Flexibility of a Metal-Organic Framework for Gated Adsorption.

Photo from wikipedia

Achieving tailorable gated adsorption by tuning the dynamic behavior of a host porous material is of great interest because of its practical application in gas adsorption and separation. Here we… Click to show full abstract

Achieving tailorable gated adsorption by tuning the dynamic behavior of a host porous material is of great interest because of its practical application in gas adsorption and separation. Here we devise a unique cation-exchange approach to tune the dynamic behavior of a flexible anionic framework, [Zn2(bptc)(datrz)]- (denoted as MAC-6, where H4bptc = [1,1'-biphenyl]-3,3',5,5'-tetracarboxylic acid and Hdatrz = 3,5-diamine-1H-1,2,4-triazole), so as to realize the tailorable gated adsorption. The CO2 adsorption amount at 273 K can be enhanced by exchanging the counterion of protonated dimethylamine (HDMA+) with tetraethylammonium (TEA+), tetrabutylammonium (TBA+), and tetramethylammonium (TMA+), where the adsorption behavior is transferred from nongated to gated adsorption. Interestingly, the Pgo for gate-opening adsorption can be further tuned from 442 to 331 mmHg by simply adjusting the ratio of HDMA+ and TMA+. The origin of this unique tunable property, as revealed by X-ray diffraction experiments and structure models, is rooted at the cation-responsive characteristic of this flexible framework.

Keywords: cation exchange; adsorption; exchange approach; framework; gated adsorption

Journal Title: Inorganic chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.