LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cobalt(II) Ions Connecting [CoII4] Helicates into a 2-D Coordination Polymer Showing Slow Relaxation of the Magnetization.

Photo from wikipedia

The reactions of cobalt(II) perchlorate with a diazine tetratopic helicand, H4L, in the presence of sodium carbonate afford two coordination polymers constructed from tetranuclear anionic helicates as building blocks: ∞3[Co4L3Na4(H2O)4]·4H2O… Click to show full abstract

The reactions of cobalt(II) perchlorate with a diazine tetratopic helicand, H4L, in the presence of sodium carbonate afford two coordination polymers constructed from tetranuclear anionic helicates as building blocks: ∞3[Co4L3Na4(H2O)4]·4H2O (1) and ∞2[Co5L3Na2(H2O)9]·2.7H2O·DMF (2). The tetranuclear triple-stranded helicates, {CoII4L3}4-, are connected in 1 by sodium(I) ions and in 2 by sodium(I) and cobalt(II) ions (H4L results from the condensation reaction between 3-formylsalicylic acid and hydrazine). The crystal structures of the two compounds have been solved. In both compounds the anionic helicates interact with the assembling cations through the carboxylato oxygen atoms. Compound 2 features chains resulting from connecting the tetranuclear helicates through cobalt(II) ions. The analysis of the magnetic properties of compounds 1 and 2 evidenced a dominant antiferromagnetic coupling for 1, resulting in a diamagnetic ground state. In contrast, the magnetic behavior of 2 is dominated at low temperature by the CoII ion which connects the antiferromagnetically coupled {CoII4} helical moieties. The ac magnetic measurements for 2 reveal the occurrence of slow relaxation of the magnetization that is due to the single, uncorrelated cobalt(II) ions, which are diluted in an essentially diamagnetic matrix of {CoII4} moieties (ΔEeff = 26.7 ± 0.3 cm-1 with τ0 = (2.3 ± 0.2) × 10-6 s).

Keywords: relaxation magnetization; slow relaxation; cobalt; cobalt ions

Journal Title: Inorganic chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.