LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrafast Energy Transfer in Dinuclear Complexes with Bridging 1,10-Phenanthroline-5,6-Dithiolate.

Photo by joshuas from unsplash

We report herein the preparation and characterization of dinuclear complexes with the bridging ligand 1,10-phenanthroline-5,6-dithiolate (phendt2-) bearing Ru(bpy)2 or Ir(ppy)2 at the diimine moiety and Ni(dppe), Ni(dppf), CoCp, RhCp*, and… Click to show full abstract

We report herein the preparation and characterization of dinuclear complexes with the bridging ligand 1,10-phenanthroline-5,6-dithiolate (phendt2-) bearing Ru(bpy)2 or Ir(ppy)2 at the diimine moiety and Ni(dppe), Ni(dppf), CoCp, RhCp*, and Ru( p-Me-iPr-benzene) at the dithiolate unit. In comparison with the mononuclear precursors used in the synthesis, all dinuclear complexes were characterized by absorption and photoluminescence spectroscopy as well as cyclic voltammetry. Because of the beneficial spectral and electrochemical properties of the Ir/Co complex for a light-driven charge separation, this complex was investigated in detail by time-resolved luminescence {nanosecond (ns)-resolution} and transient absorption spectroscopy {femtosecond (fs)-resolution}. All measurements supported by DFT calculations show that the observed effective luminescence quenching by the dithiolate coordinated metal is caused by an ultrafast singlet-singlet Dexter energy transfer.

Keywords: dinuclear complexes; phenanthroline dithiolate; complexes bridging; spectroscopy

Journal Title: Inorganic chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.