LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Size Regulation of Platinum Nanoparticles by Using Confined Spaces for the Low-Temperature Oxidation of Ethylene.

Photo from wikipedia

Noble-metal nanoparticles have attracted great attention because of their excellent catalytic activity. However, the activity of noble-metal nanoparticles is severely dependent on the size of the metal nanoparticles. Therefore, regulation… Click to show full abstract

Noble-metal nanoparticles have attracted great attention because of their excellent catalytic activity. However, the activity of noble-metal nanoparticles is severely dependent on the size of the metal nanoparticles. Therefore, regulation of the nanoparticle size is of great importance. Herein we report an efficient strategy for the first time to regulate the size of platinum (Pt) nanoparticles in a typical mesoporous silica SBA-15 by using the confined spaces. The Pt-containing precursor is introduced to the confined spaces between the template and silica walls in as-prepared SBA-15 by grinding. Subsequent calcination allows template removal and precursor conversion in one step and avoids repeated calcination in conventional modification processes. This leads to the formation of Pt nanoparticles with smaller size, making Pt metal catalysts highly active. Hence, the catalytic activity of the oxidation of trace ethylene is very superior to that of those prepared by the conventional method. For a typical material, PtAS-5, containing 5.0 wt % Pt, the complete conversion of ethylene was achieved at 40 °C, which is lower than that on the catalyst PtCS-5 prepared by the conventional method (50 °C) as well as that on a series of catalysts reported previously.

Keywords: ethylene; platinum nanoparticles; size; confined spaces; using confined; regulation

Journal Title: Inorganic chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.