Considering rapidly rising Hg emission from industrial waste effluents, it is imperative to explore practical and effective adsorbents for Hg. Herein, a mild and facile method has been developed to… Click to show full abstract
Considering rapidly rising Hg emission from industrial waste effluents, it is imperative to explore practical and effective adsorbents for Hg. Herein, a mild and facile method has been developed to confine ultrasmall In2S3 nanoparticles (about 2.5 nm) in the cavities of a MOF for the first time. The resulting composite (In2S3@MIL-101) can remove 99.95% of the Hg2+ from wastewater very efficiently in as short as 1 min with the highest distribution coefficient (2.2 × 107 mL g-1) among all MOF-based mercury adsorbents. It also displays excellent selectivity for Hg even when other interferential metal ions are present, and it can be reused with almost retained adsorption capacity. All of these features make the composite a potential adsorbent for Hg removal from industrial wastewater.
               
Click one of the above tabs to view related content.