LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanochemistry-Based Synthesis of Highly Crystalline γ-Zirconium Phosphate for Selective Ion Exchange.

Photo by barrettward from unsplash

Highly crystalline γ-zirconium phosphate has been synthesized by a novel minimalistic approach and investigated as a selective ion exchanger for cesium, ammonium and potassium. In contrast to current solution-based preparations,… Click to show full abstract

Highly crystalline γ-zirconium phosphate has been synthesized by a novel minimalistic approach and investigated as a selective ion exchanger for cesium, ammonium and potassium. In contrast to current solution-based preparations, the mechanochemistry-based synthesis provides easy access to γ-zirconium phosphate with short synthesis times and low crystallization temperature. The addition of NaF as a mineralizer increases the crystallinity of γ-zirconium phosphate, which forms micrometer-sized uniformly shaped rectangular platelets. The crystalline material has extremely high selectivity to cesium even in the presence of 1000- or 500-fold excess Na+ or Ca2+, respectively. The removal efficiency was >98% in the pH range of 2-5.5. As an ion exchanger for purification of dialysate, crystalline γ-zirconium phosphate shows higher uptake of ammonium and potassium ions than the amorphous gel compound currently used in sorbent cartridges. This sustainable protocol opens up opportunities for many practical applications of γ-zirconium phosphate.

Keywords: crystalline zirconium; zirconium phosphate; zirconium; ion; synthesis

Journal Title: Inorganic chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.