LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Relativity-Induced Bonding Pattern Change in Coinage Metal Dimers M2 (M = Cu, Ag, Au, Rg).

Photo from wikipedia

The periodic table provides a fundamental protocol for qualitatively classifying and predicting chemical properties based on periodicity. While the periodic law of chemical elements had already been rationalized within the… Click to show full abstract

The periodic table provides a fundamental protocol for qualitatively classifying and predicting chemical properties based on periodicity. While the periodic law of chemical elements had already been rationalized within the framework of the nonrelativistic description of chemistry with quantum mechanics, this law was later known to be affected significantly by relativity. We here report a systematic theoretical study on the chemical bonding pattern change in the coinage metal dimers (Cu2, Ag2, Au2, Rg2) due to the relativistic effect on the superheavy elements. Unlike the lighter congeners basically demonstrating ns- ns bonding character and a 0g+ ground state, Rg2 shows unique 6d-6d bonding induced by strong relativity. Because of relativistic spin-orbit (SO) coupling effect in Rg2, two nearly degenerate SO states, 0g+ and 2u, exist as candidate of the ground state. This relativity-induced change of bonding mechanism gives rise to various unique alteration of chemical properties compared with the lighter dimers, including higher intrinsic bond energy, force constant, and nuclear shielding. Our work thus provides a rather simple but clear-cut example, where the chemical bonding picture is significantly changed by relativistic effect, demonstrating the modified periodic law in heavy-element chemistry.

Keywords: bonding pattern; relativity; pattern change; chemistry; chemical

Journal Title: Inorganic chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.