LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Ultrahigh CO2-Loaded Silicalite-1 Zeolite: Structural Stability and Physical Properties at High Pressures and Temperatures.

Photo by vlisidis from unsplash

We report the formation of an ultrahigh CO2-loaded pure-SiO2 silicalite-1 structure at high pressure (0.7 GPa) from the interaction of empty zeolite and fluid CO2 medium. The CO2-filled structure was… Click to show full abstract

We report the formation of an ultrahigh CO2-loaded pure-SiO2 silicalite-1 structure at high pressure (0.7 GPa) from the interaction of empty zeolite and fluid CO2 medium. The CO2-filled structure was characterized in situ by means of synchrotron powder X-ray diffraction. Rietveld refinements and Fourier recycling allowed the location of 16 guest carbon dioxide molecules per unit cell within the straight and sinusoidal channels of the porous framework to be analyzed. The complete filling of pores by CO2 molecules favors structural stability under compression, avoiding pressure-induced amorphization below 20 GPa, and significantly reduces the compressibility of the system compared to that of the parental empty one. The structure of CO2-loaded silicalite-1 was also monitored at high pressures and temperatures, and its thermal expansivity was estimated.

Keywords: loaded silicalite; ultrahigh co2; co2; high pressures; co2 loaded; structural stability

Journal Title: Inorganic chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.