LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Crystal Chemical Substitution at Ca and La Sites in CaLa4(SiO4)3O To Design the Composition Ca1- xM xLa4-xRE x(SiO4)3O for Nuclear Waste Immobilization and Its Influence on the Thermal Expansion Behavior.

The oxysilicate apatite host CaLa4(SiO4)3O has been explored for immobilization of radioactive nuclides. Divalent ion, trivalent rare earth ion, and combined ionic substitutions in the silicate oxyapatite were carried out… Click to show full abstract

The oxysilicate apatite host CaLa4(SiO4)3O has been explored for immobilization of radioactive nuclides. Divalent ion, trivalent rare earth ion, and combined ionic substitutions in the silicate oxyapatite were carried out to optimize the simulated wasteform composition. The phases were characterized by powder X-ray diffraction, FT-IR, TGA, SEM-EDS, and HT-XRD techniques. The results revealed the effect of ionic substitutions on the structure and thermal expansion behavior. The investigation resulted in the formulation of simulated wasteforms such as La3.4Ce0.1Pr0.1Nd0.1Sm0.1Gd0.1Y0.1(SiO4)3O (WF-1) and Ca0.8Sr0.1Pb0.1La3.4Ce0.1Pr0.1Nd0.1Sm0.1Gd0.1Y0.1(SiO4)3O (WF-2). In comparison to the average axial thermal expansion coefficients of the hexagonal unit cell of the parent CaLa4(SiO4)3O measured in the temperature range 298-1073 K (α' a = 9.74 × 10-6 K-1 and α' c = 10.10 × 10-6 K-1), rare earth ion substitution decreases the thermal expansion coefficients, as in the case of La3.4Ce0.1Pr0.1Nd0.1Sm0.1Gd0.1Y0.1(SiO4)3O (α' a = 8.67 × 10-6 K-1 and α' c = 7.94 × 10-6 K-1). However, the phase Ca0.8Sr0.1Pb0.1La3.4Ce0.1Pr0.1Nd0.1Sm0.1Gd0.1Y0.1(SiO4)3O shows an increase in the values of thermal expansion coefficients: α' a = 11.74 × 10-6 K-1 and α' c = 11.70 × 10-6 K-1.

Keywords: cala4 sio4; expansion behavior; 4ce0 1pr0; sio4; thermal expansion

Journal Title: Inorganic chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.