LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hexagonal Perovskite Ba4Fe3NiO12 Containing Tetravalent Fe and Ni Ions.

Photo by vlisidis from unsplash

BaFe xNi1- xO3 with end members of BaNiO3 ( x = 0) and BaFeO3 ( x = 1), which, respectively, adopt the 2H and 6H hexagonal perovskite structures, were synthesized,… Click to show full abstract

BaFe xNi1- xO3 with end members of BaNiO3 ( x = 0) and BaFeO3 ( x = 1), which, respectively, adopt the 2H and 6H hexagonal perovskite structures, were synthesized, and their crystal structures were investigated. A new single phase, Ba4Fe3NiO12 ( x = 0.75), that adopts the 12R perovskite structure with the space group R3̅ m ( a = 5.66564(7) Å and c = 27.8416(3) Å), was found to be stabilized. Mössbauer spectroscopy results and structure analysis using synchrotron and neutron powder diffraction data revealed that nominal Fe3+ occupies the corner-sharing octahedral site while the unusually high valence Fe4+ and Ni4+ occupy the face-sharing octahedral sites in the trimers, giving a charge formula of Ba4Fe3+Fe4+2Ni4+O11.5. The magnetic properties of the compound are also discussed.

Keywords: containing tetravalent; ba4fe3nio12; hexagonal perovskite; perovskite ba4fe3nio12; tetravalent ions; ba4fe3nio12 containing

Journal Title: Inorganic chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.