LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hemiporphyrazine-Involved Sandwich Dysprosium Double-Decker Single-Ion Magnets.

Photo by vlisidis from unsplash

Both heteroleptic (phthalocyaninato)(hemiporphyrazinato) and homoleptic bis(hemiporphyrazinato) dysprosium double-decker complexes, Dy[H(Hp)2] (1) and Dy[H(Pc)(Hp)] (2) (H2Pc = metal-free phthalocyanine; H2Hp = metal-free hemiporphyrazine), were designed, synthesized, and structurally characterized. The dysprosium… Click to show full abstract

Both heteroleptic (phthalocyaninato)(hemiporphyrazinato) and homoleptic bis(hemiporphyrazinato) dysprosium double-decker complexes, Dy[H(Hp)2] (1) and Dy[H(Pc)(Hp)] (2) (H2Pc = metal-free phthalocyanine; H2Hp = metal-free hemiporphyrazine), were designed, synthesized, and structurally characterized. The dysprosium center in both double-deckers are octa-coordinated with a nearly ideal square-antiprismatic coordination geometry, which provides an increased molecular anisotropy for the dysprosium ion and ensures the strengthened magnetic properties of both single-ion magnets (SIMs) in terms of coordination geometry. Magnetic studies reveal that both double-deckers exhibit typical SIM behavior with a spin reversal energy barrier of 80.1 ± 6.3 K for 1 and 57.3 ± 3.8 K for 2 as well as the hysteresis loops emerging at 3 K. In particular, introduction of two Hp ligands with four pyridine nitrogen atoms coordinated with the dysprosium spin center endows Dy[H(Hp)2] (1) with the thus far highest energy barrier among the sandwich-type dysprosium SIMs with N4-macrocyclic ligands, revealing the potential applications of sandwich-type lanthanide complexes with Hp ligands in molecular-based information storage.

Keywords: single ion; geometry; double decker; dysprosium; dysprosium double

Journal Title: Inorganic chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.