LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrothermal Synthesis of Urchin-like W-V-O Nanostructures with Excellent Catalytic Performance.

Photo by vlisidis from unsplash

Urchinlike W-V-O microspheres have been successfully synthesized for the first time by a one-pot hydrothermal approach. The as-synthesized W-V-O material was characterized by several techniques such as XRD, SEM, TEM,… Click to show full abstract

Urchinlike W-V-O microspheres have been successfully synthesized for the first time by a one-pot hydrothermal approach. The as-synthesized W-V-O material was characterized by several techniques such as XRD, SEM, TEM, FTIR, EDS, BET, and Raman spectroscopy. The characterization results have revealed that the W-V-O microspheres consist of numerous one-dimensional nanobelts radially grown from the center. The typical nanobelts display rectangular cross sections with lengths of several micrometers, widths of about 50 nm, and thicknesses of approximately 10-20 nm. Vanadium oxides are dispersed highly either on the external surface or inside the channel surface of the hexagonal WO3 structure. In addition, the as-obtained urchin-like W-V-O material was explored as a catalyst for the ammoxidation of 2,4- and 2,6-dichlorotoluene to the corresponding nitriles. The catalytic results have indicated that the W-V-O nanostructures show excellent performance with yields of 2,4- and 2,6-dichlorobenzonitrile respectively reaching up to 77.3 and 75.1%, which are the highest among the previously reported catalysts with two components. The formation process of the urchinlike W-V-O microspheres was simply investigated.

Keywords: hydrothermal synthesis; nanostructures excellent; synthesis urchin; urchin like; performance; like nanostructures

Journal Title: Inorganic chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.