LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cr2O3 Nanoparticle-Reduced Graphene Oxide Hybrid: A Highly Active Electrocatalyst for N2 Reduction at Ambient Conditions.

Photo from wikipedia

Electrochemical reduction is an eco-friendly alternative for energy-saving artificial N2 fixation. The development of this process requires efficient N2 reduction reaction (NRR) electrocatalysts to overcome the challenge with N2 activation.… Click to show full abstract

Electrochemical reduction is an eco-friendly alternative for energy-saving artificial N2 fixation. The development of this process requires efficient N2 reduction reaction (NRR) electrocatalysts to overcome the challenge with N2 activation. We show that a Cr2O3 nanoparticle-reduced graphene oxide hybrid (Cr2O3-rGO) is as an outstanding catalyst for electrochemical N2-to-NH3 conversion under ambient conditions. In 0.1 M HCl, Cr2O3-rGO achieves a high NH3 yield of 33.3 μg h-1 mg-1cat. at -0.7 V vs RHE and a high Faradaic efficiency of 7.33% at -0.6 V vs RHE, with excellent selectivity for NH3 synthesis and stability. Density functional theory calculations were executed to gain further insight into the mechanisms.

Keywords: graphene oxide; reduction; oxide hybrid; cr2o3 nanoparticle; nanoparticle reduced; reduced graphene

Journal Title: Inorganic chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.