LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lattice Water Controlled Photo- and Thermochromism of N-Protonated Carbomethoxypyridinium Iodoargentate Hybrids.

Two iodoargentate hybrids, {[HNOM][AgI2]·H2O} (1) and {[HINOM][AgI2]·H2O} (2) (HNOM+ = N-protonated 3-carbomethoxypyridinium; HINOM+ = N-protonated 4-carbomethoxypyridinium), have been designed and prepared, which were constructed from typical [AgI2]- inorganic chains and… Click to show full abstract

Two iodoargentate hybrids, {[HNOM][AgI2]·H2O} (1) and {[HINOM][AgI2]·H2O} (2) (HNOM+ = N-protonated 3-carbomethoxypyridinium; HINOM+ = N-protonated 4-carbomethoxypyridinium), have been designed and prepared, which were constructed from typical [AgI2]- inorganic chains and cationic hydrogen-bonding supramolecular networks (one-dimensional for 1 and three-dimensional for 2) of lattice water and positional isomeric N-protonated carbomethoxypyridinium. Two hybrids exhibit sensitive photochromism based on intermolecular electron transfer (ET) and thermochromism due to reversible hydration and dehydration and the consequent variation of intermolecular charge transfer (CT). Furthermore, loss of lattice water gives rise to improved photochromic dehydrated form 1T and optically inert dehydrated form 2T, suggesting a delicate modulating effect of lattice contraction on the intermolecular CT and ET as well as consequently photoresponsive behaviors.

Keywords: iodoargentate hybrids; carbomethoxypyridinium; protonated carbomethoxypyridinium; thermochromism; lattice water

Journal Title: Inorganic chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.