Building on a proof of concept study that showed the possibility of the mechanochemical insertion of some M(II) metals into meso-tetraphenylporphyrin using a ball mill as an alternative to traditional… Click to show full abstract
Building on a proof of concept study that showed the possibility of the mechanochemical insertion of some M(II) metals into meso-tetraphenylporphyrin using a ball mill as an alternative to traditional solution-based methods, we present here a detailed study of the influence of the many experimental variables on the reaction outcome performed in a planetary mill. Using primarily the mechanochemical zinc, copper, and magnesium insertion reactions, the scope and limits of the type of porphyrins (electron-rich or electron-poor meso-tetraarylporphyrins, synthetic or naturally occurring octaalkylporphyrins, and meso-triphenylcorrole) and metal ion sources suitable for this metal insertion modality were determined. We demonstrate the influence of the experimental metal insertion parameters, such as ball mill speed and reaction time, and investigated the often surprising roles of a variety of grinding agents. Also, the mechanochemical reaction conditions that remove zinc from a zinc porphyrin complex or exchange it for copper were studied. Using some standardized conditions, we also screened the feasibility of a number of other metal(II) insertion reactions (VO, Ni, Fe, Co, Ag, Cd, Pd, Pt, Pb). The underlying factors determining the rates of the insertion reactions were found to be complex and not always readily predictable. Some findings of fundamental significance for the mechanistic understanding of the mechanochemical insertion of metal ions into porphyrins are highlighted. Particularly the mechanochemical insertion of Mg(II) is a mild alternative to established solution methods. The work provides a baseline from which the practitioner may start to evaluate the mechanochemical metal insertion into porphyrins using a planetary ball mill.
               
Click one of the above tabs to view related content.