LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A [2Fe-1S] Complex That Affords Access to Bimetallic and Higher-Nuclearity Iron-Sulfur Clusters.

Photo by eriic from unsplash

Small, coordinatively unsaturated iron-sulfur clusters are conceived as building blocks for the diverse set of shapes of iron-sulfur clusters in biological and synthetic chemistry. Here we describe a synthetic method… Click to show full abstract

Small, coordinatively unsaturated iron-sulfur clusters are conceived as building blocks for the diverse set of shapes of iron-sulfur clusters in biological and synthetic chemistry. Here we describe a synthetic method for preparing [2Fe-1S] clusters containing two iron(II) ions, which are supported by a relatively unhindered β-diketiminate supporting ligand. The [2Fe-1S] cluster can be isolated in the presence of trimethylphosphine, and the compound with one PMe3 on each iron(II) ion has been crystallographically characterized. The PMe3 ligands may be removed with B(C6F5)3 to give a spectroscopically characterized species with solvent ligands. This species is a versatile synthon for [2Fe-2S], [4Fe-3S], and [10Fe-8S] clusters. Crystallographic characterization of the 10Fe cluster shows that it has all iron(II) ions, and the core has two [4Fe-4S] cubes that share a face in a novel arrangement. This cluster also has two iron sites that are coordinated to solvent donors, suggesting the potential for using this type of cluster for reactivity in the future.

Keywords: iron sulfur; chemistry; sulfur clusters; iron; cluster

Journal Title: Inorganic chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.