LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Activation of the Aromatic Core of 3,3′-(Pyridine-2,6-diylbis(1H-1,2,3-triazole-4,1-diyl))bis(propan-1-ol)—Effects on Extraction Performance, Stability Constants, and Basicity

Photo by jalalkelink from unsplash

The “CHON” compatible water-soluble ligand 3,3′-(pyridine-2,6-diylbis(1H-1,2,3-triazole-4,1-diyl))bis(propan-1-ol) (PTD) has shown promise for selectively stripping actinide ions from an organic phase containing both actinide and lanthanide ions, by preferential complexation of the… Click to show full abstract

The “CHON” compatible water-soluble ligand 3,3′-(pyridine-2,6-diylbis(1H-1,2,3-triazole-4,1-diyl))bis(propan-1-ol) (PTD) has shown promise for selectively stripping actinide ions from an organic phase containing both actinide and lanthanide ions, by preferential complexation of the former. Aiming at improving its complexation properties, PTD-OMe was synthesized, bearing a methoxy group on the central pyridine ring, thus increasing its basicity and hence complexation strength. Unfortunately, solvent extraction experiments in the range of 0.1–1 mol/L nitric acid proved PTD-OMe to be less efficient than PTD. This behavior is explained by its greater pKa value (pKa = 2.54) compared to PTD (pKa = 2.1). This counteracts its improved complexation properties for Cm(III) (log β3(PTD-OMe) = 10.8 ± 0.4 versus log β3(PTD) = 9.9 ± 0.5).

Keywords: pyridine; pyridine diylbis; diyl bis; triazole diyl; bis propan; diylbis triazole

Journal Title: Inorganic Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.